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In the financial econometric literature there is significant
evidence that stock market returns are, to a certain degree,
predictable.  The  main  objective  has  been  to  predict  the
overall  level,  the  conditional  mean,  of  stock  returns.
However, several studies have shown that only the direction of
stock returns is predictable. (Christoffersen 2006)

Prediction of the sign of future returns is known as direction
of change forecasting in the literature and is indeed very
interesting  especially  from  a  trading  perspective.  The
previous  literature  on  direction  of  change  forecasting  is
mainly based on time series models for excess stock return.
For example, Cristoffersen and Diebold 2006 take into account
the  connection  between  asset  return  sign  forecast  and
volatility respectively and show that volatility and higher
order  conditional  moments  have  statistically  significant
explanatory power in predicting the sign of future returns.
(Quantivity)

Traditionally  for  this  topic  probabilities  of  returns
exceeding  an  upper  or  lower  threshold  are  estimated,
conditioned on an information set based on the previous time
period.  The  majority  of  the  literature  has  considered
univariate return series. However, an alternative approach for
estimating these probabilities is to use a multinomial logit
model, based on the logisitic function. The basic challenge
with the use of this approach is the selection of explanatory
variables, since these explanatory variables are part of the
information set from the previous time period which helps
estimate the probabilities. (Quantivity)
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In this paper we use tick-data of an IBM stock from NYSE. A
multinomial logit model with penalization is used to predict
the direction of change of stock returns. In particular, we
take into account varying levels of change by constructing
multiple response variables. Response in our models is based
on the tick-data and we divide the categories based on a
threshold  of  1  basis  point  as  following
[-2,-1],[-1,0],[0,1],[1,2] and so on. This allows us to not
only  predict  the  sign  of  the  return  but  also  particular
intervals of returns.

For predicting the probabilities, the use of the multinomial
logit model was chosen since it is the most widely used model
in the multi-categorical regression. It specifies conditional
probabilities of response categories through linear functions
of covariate vector X. (Tutz & Zahid 2009) However when the
number of predictors is large compared to the observations or
when they are highly correlated, the logit model suffers from
problems since the estimates of parameters can’t be identified
as  variance  goes  to  infinity.  The  use  of  regularization
methods can help to overcome such problems. Regularization
methods maximize a penalized log-likelihood. (Tutz & Zahid
2009) Ridge regression, one of the older penalization methods,
was  defined  by  Schaefer  1984  for  the  logistic  regression
model. Alternative penalization methods have been proposed for
univariate GLMs, one of which is Lasso (Tibshirani 1996). In
the previous literature for multicategory responses Zhu and
Hastie 2004 have used the ridge type penalization and Friedman
2008 uses the L1 penalty (lasso), L2 (ridge) and a mixture of
the two (elastic net).

In this paper we make use of two different packages in the R
programming language. The MRSP package is used to estimate
ridge regression, using fisher scoring, for a multicategory
logit model with symmetric-side constraints. While the Glmnet
package uses varying levels of alpha ( 0 to 1 ) to estimate
Leas Absolute Shrinkage and Selection Operator (LASSO), Ridge
estimator and a mixture of two (elastic-net).



Multinomial Logit Model with Symmetric Side Constraints

A multinomial logit model is used when a categorical response
variable  has  more  than  two  categories.  Let  the  response
variable Y ∈ (1, …, k) have k possible values(categories).

Some  additional  constraints  have  to  be  specified  since
parameters  are not identifiable. Usually the side constraint
is based on a reference category (RSC). In their paper, Tutz
and Maqbool use an alternative side constraint that is more
appropriate  while  defining  regularization  terms  i.e.  the
symmetric side constraint

Parameters for symmetric side constraint are different from
the  traditional  model  and  therefore  have  a  different
interpretation. In this particular case the median response is
viewed  as  the  reference  category  and  is  defined  by  the
geometric mean. 

Hence,  the effects of X on the logits when P (Y  = r|X) is
compared  to  the  median  response  .  Especially  in  high
dimensional problems, the use of regularization methods is
advantageous because penalized estimators exist and have much
better prediction error compared to the usual ML estimator.

GLMNET with LASSO, Ridge and Elastic Net

Friedman et al (2007) introduced fast algorithms for fitting
generalized linear models with elastic-net penalties. In our
paper  we  make  use  of  the  glmnet  package  to  solve  the
multinomial regression. The multinomial regression model has
already been introduced in the last section. Here we introduce
LASSO, Ridge and Elastic Net.Elastic net penalty (Zhu & Hastie
2004) compromises between ridge regression penalty (α = 0) and
the lasso penalty (α = 1). This penalty is particularly useful
in the p>N situation, or a situation in which there are many
correlated predictor variables.

Ridge regression allows coefficients of correlated predictors



to borrow strength from each other by shrinking them towards
each other. In the unique case of k identical predictors, each
gets identical coefficients with 1/kth size that of any single
coefficient. (Friedman 2008)

On the other hand, LASSO is indifferent to very correlated
predictors and tends to pick one and ignore the rest. In the
unique case mentioned above LASSO would break down. The LASSO
penalty expects many coefficents to be close to zero and a
small number to be larger or non-zero. (Friedman 2008)

The elastic net, a mixture of both, when α = 1 − ε for small ε
> 0 performs similar to LASSO, but removes any out-of-the-
ordinary behavior caused by extreme correlations. Basically,
as α increases from 0 to 1, for a given λ the sparsity of the
solution to the minimization problem increases from 0 to the
sparsity of the LASSO solution. (Friedman 2008)

DATA AND METHODOLOGY

In our paper we use one month’s tick data of an IBM stock from
the NYSE. For the purpose of our analysis we divided the data
into two parts, i.e. training data (first 3 weeks) and test
data (last one week). We were provided with two data sets, one
contained the data on the stock price for each transaction
while the other contained the bid and ask price data for every
transaction. Both the data sets were consequently merged and
the values for which both price and bid-ask data did not exist
were ignored. The total number of observations for the bid-ask
data set was 287,953. While the total number of observations
after merging the two data sets was 74,273. The number of
observations for the bid-ask data set is of importance since
it was used to create several explanatory variables which
helped us in our analysis.

The table on the following page presents all the explanatory
variables  created  for  the  consequent  analysis.  A  simple
explanation about each variable is presented in the table. On
average for 4 bid-ask entries there is only one data point for



price,  therefore,  to  keep  the  price  data  set  as  big  as
possible means were taken over four observations.

Explanatory
Variables

Variable Name Explanation

Index
Represents day and time for each

observation

Date Date of transaction

Time Time of transaction

Bid Bid price

Bidvol Bid Volume

Ask Ask price

Askvol Ask Volume

spread Ask-Bid Spread

midprice Average of Ask-Bid price

askdif Difference between subsequent ask prices

biddif Difference between subsequent bid prices

askdifn
Difference between ith and (i+4)th ask

prices

biddifn
Difference between ith and (i+4)th bid

prices

mask
Mean of ask price for 4 subsequent

points

mbid
Mean of bid price for 4 subsequent

points

maskvol Volume of mask

mbidvol Volume of mbid

accdiffp Accumulated price differences

accdiffvol Accumulated volume differences

spreadvol Spread of askvol and bidvol



sigmaspreadp
standard deviation of spread over 20

observations

sigmaspreadv standard deviation of volume of spread

sigmaask standard deviation of mean of ask price

sigmabid standard deviation of mean of bid price

dpbiddt
bid price change over subsequent time

difference

dpaskdt
ask price change over subsequent time

difference

dpbidvoldt
bid volume change over subsequent time

difference

dpaskvoldt
ask volume change over subsequent time

difference
In our analysis, returns on stock price were categorized based
on one-basis-point intervals, i.e. -1 to 0 basis point, 0 to 1
basis point and so on. These intervals were used to create
response  categories.  To  allow  for  robust  analysis  four
different response category variables were constructed, with
three, five, seven and nine categories respectively, where
each category represents a one-basis-point interval on the
return-on-stock price.

As mentioned earlier we made use of two different packages in
the R programming language, i.e. MRSP and glmnet. Using MRSP,
multinomial logit models with symmetric side constraints and
ridge penalization, LASSO and traditional mle were estimated.
Therefore, with our four different response category variables
a total of twelve models were analyzed with the help of this
package.  On  the  other  hand,  glmnet  allows  the  additional
feature of varying the value of alpha from 0 (ridge) to 1
(LASSO) which allowed us to achieve a mix of both penalization
(elastic-net) as well. Using 0.1 intervals for alpha a total
of eleven different models were estimated. Again with our four
response-category  variables  we  were  able  to  obtain  44
different estimates with the glmnet package. With the help of



all these different estimates we were able to get predictions
on our test data (last week’s data) and obtained Mean Squared
Errors  for  all  the  models  which  allowed  us  to  check  and
compare the errors in all the different predictions to assess
accuracy.

MRSP and glmnet use different methods for model selection. In
MRSP  the  model  is  chosen  automatically  by  Akaike  Info
Criterion. On the other hand, glmnet uses n (default = 10)fold
cross validation to choose an appropriate model. It does so by
breaking down data into ten different blocks and uses nine
blocks to fit the model and gets the mean squared errors for
the rest. Consequently, it chooses the lambda at which the
mean squared error is minimized. The cv.function in glmnet
allowed us to extract graphs for MSE vs lambda as well. A
shortcoming of both the packages was the amount of time they
take  to  run  loops,  especially  for  alphas  in  the  case  of
glmnet. While, an advantage of using both packages is that
they do not need a specific reference category but instead use
the symmetric multinomial logit model to estimate the models.

It is important to mention here, as shown in the results
later, most of the times LASSO tends to leave out majority of
the coefficients since it shrinks all the highly correlated
coefficients to zero. Most of the coefficients in our analysis
are  bound  to  have  high  correlation  since  they  were  all
constructed from the same bid-ask data set. On some occasions
LASSO  shrinks  all  the  coefficients  to  zero  except  the
intercept which is not of much significance, on the other
hand, ridge and elastic net tend to shrink, but not to zero,
most of the variables.

Nevertheless, our aim during the entire analysis has been to
choose the model with the highest predictive power rather than
choosing explanatory variables. This so because our main goal
is to approach data as an information set that can predict
future return as efficiently as possible. For this reason, we
are  interested  in  the  model  with  the  lowest  mean  squared



error.  Intuitively,  as  the  number  of  response  categories
decreases we should expect the MSE to go down but our analysis
shows that sometimes such is not the case.

The graphs above gives the output from cv.glmnet using the
model with nine reference categories. The graph on the left
shows coefficient paths for differing values of lambda, i.e.
the tuning parameter. Coefficients in this case are in the l-2
norm (the Euclidean norm form). While for the l-1 norm the
glmnet  gives  coefficient  vs  log  lambda  graphs  for  each
category. The graph on the right shows the model with ridge
penalization using 10-fold cross validation. There are two
dotted lines on the graph on the right. The one on the left
represents the lambda where the MSE is minimum while the one
on the right gives the maximum lambda where one standard error
of minimum MSE is still in the range. Our goal in the analysis
will be to choose coefficients and model based on the lambda
that minimizes the cross validated MSE.

The  above  graphs  are  for  the  three  category  case.  The
coefficient paths in that case seem similar to the one with
the nine category case but the graph on the right side shows a
much better fit. The two dotted lines are much closer which is
a reflection of a better fit. This in a sense proves our



intuition as well that less categories lead to a better fit.

The graphs above are for the other two category cases, i.e.
five and seven categories respectively. The trend of a better
fit with less categories is evident to a certain extent from
these graphs as well. However, there is a difference in the
distributions of the miniimum MSEs which goes against out
early intuition.

The above two graphs are for the model with three response
categories. LASSO seems to perform better than the elastic net
penalization where alpha = 0.5. LASSO shrinks 11 out of the 27
variables to zero whereas elastic net shrinks 9 variables to
zero. While ridge penalization doesn’t shrink any variable to



zero, with LASSO and elastic net such is not the case. This
goes to show the importance of the right choice of alpha for
the  analysis.  For  this  very  reason  we  make  use  of  the
cv.glmnet function for 11 different values of alpha ranging
from 0 to 1 (0.1 intervals) and then choose the model with a
better fit and predictive power.

RESULTS and ANALYSIS

As mentioned before we analyze the output of fitted models
with the cv.glmnet function. We had four different types of
response categories, i.e 3, 5, 7 and 9 response categories.

9-Category Data

Weight of L1 Predicted MSE

α = 0.0 2.67258

α = 0.1 2.72469

α = 0.2 2.72583

α = 0.3 2.73232

α = 0.4 2.73291

α = 0.5 2.73329

α = 0.6 2.73248

α = 0.7 2.73383

α = 0.8 2.73194

α = 0.9 3.68399

α = 1.0 2.73746
The table above gives the predicted MSEs for the 9 category
data for values of alpha ranging from 0 to 1, where alpha = 0
is ridge penalization and alpha = 1 is LASSO. From the table
we can see that the lowest MSE is obtained by using the ridge
estimator (alpha=0). From this result we can infer that it is
better  to  keep  all  27  variables  in  the  model  instead  of
shrinking  some  of  them  to  zero.  Mean  squared  errors  are
obtained by using class (category) predictions.



The set of graphs below provide the cross validation paths for
the 9-category model for different values of alpha ranging
from 0 to 1. Although the paths seem quite similar but the
model  with  the  ridge  estimator  (first  graph)  provides  a
relatively better distribution for the minimum MSE. This means
that compared to the other models the value of lambda which
minimizes the MSE and the maximum value of lambda within one
standard deviation of the minimum MSE are very close. This is
indeed a good sign for a better fitted model. Since the MSEs
in the graphs are obtained from cross-validation predictions,
it only shows the squared prediction errors. Therefore, it is
a reasonable idea to check the distribution of the MSEs (in
this case the minimum MSE).

To check and compare response variables we now present models
with the other three category classification.

3-Category Data

Weight of L1 Predicted MSE

α = 0.0 2.77501

α = 0.1 2.78172

α = 0.2 2.78237

α = 0.3 2.78410

α = 0.4 2.78367

α = 0.5 2.78259

α = 0.6 2.78280

α = 0.7 2.78367

α = 0.8 2.78454



α = 0.9 2.78064

α = 1.0 2.78324
The table above provides the predicted MSEs for the model with
3 response categories. Again, using a similar approach, we see
that the ridge estimator performs relatively better than the
other penalization. It is important to note here that compared
to  the  model  with  9  response  categories  this  model  gives
relatively lower model MSEs but worse predicted MSEs. The set
of graphs below present the cross validation paths for the
model with 3 response categories for the different values of
alpha.

Similarly, the table and the set of graphs below provide the
predicted MSEs and the cross-validation paths, respectively,
for the model with 7 response categories.

7-Category Data

Weight of L1 Predicted MSE

α = 0.0 2.68606

α = 0.1 2.72107

α = 0.2 2.72328

α = 0.3 2.72945

α = 0.4 2.73140

α = 0.5 2.72583

α = 0.6 2.72718

α = 0.7 2.72777

α = 0.8 2.72761



α = 0.9 2.72945

α = 1.0 2.73237

Similar  to  the  previous  two  cases,  the  ridge  estimator
outperforms  the  rest  in  the  model  with  seven  response
categories as well. Though, in this case it is not clear
whether or not the minimum MSE distributions differ between
the  different  values  of  alpha.  As  far  as  predicted  mean
squared  errors  go,  the  model  with  7  response  categories
outperforms the model with 3 response categories but does
worse compared to the model with 9 response categories.

The table and set of graphs below provide the predicted MSEs
and cross-validation paths, respectively, for our last model
with 5 response categories.

5-Category Data

Weight of L1 Predicted MSE

α = 0.0 3.00368

α = 0.1 3.00660

α = 0.2 3.00628

α = 0.3 3.00179

α = 0.4 3.00281

α = 0.5 3.00400

α = 0.6 3.00579

α = 0.7 3.00525

α = 0.8 3.00617

α = 0.9 3.00676



α = 1.0 3.00801

The results above show that the predictive power of the model
where  alpha=0.3  (elastic-net)  outperforms  the  rest.  Again
there is not much to differentiate between the different plots
for the cross-validation paths. Given the lowest value of MSE
for alpha=0.3, in this case, it can be inferred that this
model is the best with 5 response categories. It should also
be noted that compared to the other three models, the model
with  5  response  categories  gives  the  highest  prediction
errors.

MRSP

After analyzing the output obtained from the glmnet package we
now shift our attention to the other package used during this
study, i.e MRSP. MRSP provides the option of estimating a
multinomial logit model with symmetric side constraints and
ridge penalization. The model provides predicted probabilities
for each test observation, with respect to each category.
After  obtaining  these  probabilities,  expected  class  is
obtained by multiplying these probabilities with the referring
class. This allows us to compute the prediction errors, i.e.
predicted mean squared errors.

In addition to this we also compute prediction errors for the
same model with LASSO and simple multinomial logit (no penalty
and reference category = 0). This is done so as to get a
comparison with ridge estimator and to understand if any gains
to efficiency are obtained. In addition, the tuning parameter,
lambda, is chosen using AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion). The two tables below



provide  the  predicted  MSEs  obtained  using  AIC  and  BIC
respectively.

AIC

Category
Predicted MSE –

LASSO

Predicted    MSE  
–    No

 
penalty

Predicted MSE –
Ridge
 

SSC

3 2.52297 2.52256 2.52182

5 2.47749 2.47409 2.47339

7 2.52254 2.51958 2.51893

9 2.80025 2.80066 2.80217

BIC

Category
Predicted MSE –

LASSO

Predicted    MSE  
–    No

 
penalty

Predicted MSE –
Ridge
 

SSC

3 2.52499 2.52256 2.52182

5 2.48389 2.47409 2.47339

7 2.52513 2.51958 2.51893

9 2.79353 2.80066 2.80217
We  can  infer  from  the  above  two  tables  that  the  ridge
estimator  with  SSC  outperforms  the  other  two  models,
irrespective of the criterion used. However, for the model
with  9  response  categories  the  ridge  estimator  actually
performs the worst. This goes against most of what we found
out so far. It should be noted however that for the model with
9 response categories there was an anomaly with glmnet package
as well, where the MSE from LASSO was lower than that from the
ridge estimator.

CONCLUSION

It can be concluded from the above analysis that the ridge
estimator,  except  for  a  few  cases,  outperforms  other



estimators in achieving the lowest Mean Squared Error. We also
found out that our earlier intuition that a smaller number of
categories results in a better model was supported by the
model MSEs but not by the predicted MSEs.

For our analysis we only had one month of data. We trained 3
weeks of data and tested the last one week. It might have been
due  to  the  nature  of  our  data  that  we  obtained  certain
anomalies  which  go  against  the  conclusion  that  the  ridge
estimator outperforms the rest. However, the majority of the
results show that the ridge estimator has the best prediction
power and this result is in line with the paper by Tutz and
Maqbool  (2009).  It  might  be  the  case  that  if  a  similar
analysis is performed on a larger data set or at smaller
(weekly,  daily,  intraday)  intervals  the  predictive  power
improves.  For  further  analysis,  increasing  the  number  of
categories  can  be  one  option  but  with  the  limited
computational power of the packages an analysis might not be
possible.  Nevertheless,  based  on  the  different  techniques
used,  the  multinomial  logit  model  with  symmetric  side
constraints and ridge penalization performed the best based on
efficiency of run-time and precision of prediction.
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