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In Part 1 of this series on predicting Bitcoin returns, we
introduced  the  characteristics  of  Bitcoin  and  gave  data
examples to conduct modelling on. Bitcoin is good for safe
irreversible  financial  transactions.  However,  it  is  also
invested in as an asset. Therefore, we need to know how to
predict its price and returns. We will apply some statistical
models and choose those that best match the data.

First  of  all,  we  need  to  know  which  statistical  process
Bitcoin price and return follow. This analysis will be used
for  direct  price  prediction  and  input  for  volatility
prediction as return process. Please note that in Part 2 here,
we will focus more closely on estimating volatility rather
than on price and return prediction because it is stylized
fact that price and return of an asset are not as accurately
predictable  as  their  conditional  volatility.  Moreover,  a
conditional variance estimation gives us information about the
distribution of the returns, which, on its own, will suffice
for analysis. Once we estimate the conditional volatility one-
step ahead, we will have a good measure of the lowest and
highest returns, and we can build stop-buy, stop-sell and
other trading strategies well.

Here In this paper, we will use only minutely data. In later
parts, we will use other data types including daily data for
volatility prediction. Keep in mind that the GARCH framework
is widely used in risk analysis in banks as well. Let’s check
the behavior of our data. We will mainly use R programming
language  and  statistical  package  Eviews  for  our  analyses.
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Codes will be made available upon request of the author.

Graph 1. Values and Density of Bitcoin Prices

The Eviews output above shows 15-day minutely data and its
kernel  density  from  January  2021.  The  data  has  20.154
observations, which is quite rich. The graph implies a random
trend (that is, unit root). Let’s check:

Table 1.  Eviews Output for Unit Root Test



The test above shows that our Bitcoin price data has a unit
root.  PP(unit root test) and KPSS(stationarity test) tests
from both R and Eviews suggest the same result. Thus, it is
useless to predict the price itself since unit root means that
the price has a random trend that cannot be predicted. Let’s
move to the returns’ structure.

Graph 2. Values and Density of Bitcoin Returns



The returns’ data and its kernel density look like a standard
normal distribution with some spikes, but let us test its
normality and stationarity. The graph also implies volatility
clustering.

Table 2.  Eviews Output for Unit Root Test and Normality



The  tests  suggests  that  returns  are  stationary  but  not
normally distributed. It gives us a good idea as to when we
estimate volatility since we can use different distributional
assumptions for returns. If we use Student’s t-distribution
instead of normal, we would expect riskier values of up and
downturns in data, as Bitcoin price behavior would suggest. R
assigns the returns data ARMA(0,3) process (that is, MA(3)),
but Eviews suggests the model for returns could be ARMA(4,4)
process.  I  would  go  with  MA(3)  process  as  it  is  more
parsimonious and depicts the randomness of the returns well.
Instead of predicting returns themselves, we skip directly to
volatility modelling as it is more interesting and useful.



Engle  (1982)  developed  the  Nobel-winning  Autoregressive
Conditional  Heteroskedasticity  (ARCH)  model  that  recognizes
the difference between unconditional and conditional variance
and  lets  the  conditional  variance  change  over  time  as  a
function of previous periods’ error terms. This technique has
the ability to capture the effect of volatility clustering,
but it requires a model with a relatively long lag structure,
which makes estimation difficult. Below is the formulation of
the theory and stylized facts. Note that, MA(3) process meets
the error criteria below.

R[t] = mu + e[t]

e[t] = s[t]*z[t].

To make this task easier, Bollerslev (1986) proposed a GARCH
model that enables a reduction in the number of parameters by
imposing nonlinear restrictions. This GARCH model can predict
unconditional variance and requires fewer parameters. In a
GARCH model, the most recent observations have greater impacts
on the predicted volatility:

Graph 3. Values and Density of Bitcoin Return Squares



The graph and the correlograms of the squared return series
suggest  autocorrelation,  which  we  want  for  conditional
variance  estimation.  Note  that  we  only  formulated  simple
GARCH(1,1) but will use as different as possible conditional
volatility  estimates  and  compare  them,  which  is  the  main
purpose of this paper. Moreover, we will choose different
distributions for the error structure that we think better
depicts  Bitcoin  price  behavior.  Please  keep  in  mind  that
financial institutions use GARCH framework for value at risk
analysis(VaR).

I  consider  you  have  already  realized  how  many  GARCH  type
models exist. So, I will choose interesting ones and summarize
the results. First, I will look at the models’ information
criteria  such  as  Akaike  Information  Criteria,  Bayes
Information  Criteria,  etc.  The  formula  is  below:



You  can  see  that  the  function  penalizes  for
overparametrization. Moreover, it has a negative relation with
the log-likelihood function, which combined means that the
smaller the value, the better the model. The criteria may mean
information  loss  in  the  model.  Let’s  see  how  the  models
behave:

Table 3. Models with Different Distributions and Criteria

We can see that the best model according to the data criteria
is TGARCH with Student’s t distribution. We will go through
that model more closely.

Graph 4. Series with Respective Limits



It is clear from above that our limits are estimated according
to the data.

Graph 5. Estimated Volatilities



The chart above shows the estimated volatilities and their
return counterparts. Looking at the graph, we can think that
there  is  no  particular  problem  because  it  accords  with  a
typical volatility structure.

Graph 6. Autocorrelation of Series and Squared Series



Looking at the graphs above, we can conclude that the series
do not have strong autocorrelation, but the quadratic series
exhibits strong memory properties. This is important because
we estimate the autocorrelation structure in the variances.

Graph 7. Normality Test

As we assume a Student’s t distribution for the errors, we do
not expect a perfect fit. The chart above shows that there is
no concern with volatility modeling. Below is a QQ-plot, i.e.,
normality check in another way. But some of the tail values we



expect differ.

Graph 8. QQ Normality Test

Graph 9.News Impact Curve

Above  is  the  News  Impact  Curve  chart,  which  shows  how
volatility (risk) reacts to shocks (returns). As can be seen,
negative  values  affect  the  risk  more,  and  this  is  quite
intuitive under the TGARCH mechanism.

In conclusion, we have found that TGARCH model was the best



for  modelling  Bitcoin  data.  This  means  that  our  data  has
asymmetry  in  structure,  which  is  well  captured  by  TGARCH
model.  The  News  Impact  Curve  also  strongly  supports  our
result.
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You can read the first part of the article here.
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